Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic and Optical Modeling of Solar Cell Compounds CuGaSe2 and CuInSe2

Identifieur interne : 002F99 ( Main/Repository ); précédent : 002F98; suivant : 003000

Electronic and Optical Modeling of Solar Cell Compounds CuGaSe2 and CuInSe2

Auteurs : RBID : Pascal:12-0055538

Descripteurs français

English descriptors

Abstract

We present dielectric-function-related optical properties such as absorption coefficient, refractive index, and reflectivity of the semiconducting chalcopyrites CuGaSe2 and CuInSe2. The optical properties were calculated in the framework of density functional theory (DFT) using linear combination of atomic orbitals (LCAO) and full-potential linearized augmented plane wave (FP-LAPW) methods. The calculated spectral dependence of complex dielectric functions is interpreted in terms of interband transitions within energy bands of both chalcopyrites; for example, the lowest energy peak in the ε2(ω) spectra for CuGaSe2 corresponds to interband transitions from Ga/Se-4p → Ga-4s while that for CuInSe2 emerges as due to transition between Se-4p → In-5s bands. The calculated dielectric constant, ε4(0), for CuInSe2 is higher than that of CuGaSe2. The electronic structure of both compounds is reasonably interpreted by the LCAO (DFT) method. The optical properties computed using the FP-LAPW model (with scissor correction) are close to the spectroscopic ellipsometry data available in the literature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0055538

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic and Optical Modeling of Solar Cell Compounds CuGaSe
<sub>2</sub>
and CuInSe
<sub>2</sub>
</title>
<author>
<name sortKey="Soni, Amit" uniqKey="Soni A">Amit Soni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Global Institute of Technology (GIT)</s1>
<s2>Jaipur 302 022, Rajasthan</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Jaipur 302 022, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dashora, Alpa" uniqKey="Dashora A">Alpa Dashora</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, M.L. Sukhadia University</s1>
<s2>Udaipur 313 001, Rajasthan</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Udaipur 313 001, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Vikas" uniqKey="Gupta V">Vikas Gupta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, Malaviya National Institute of Technology (MNIT)</s1>
<s2>Jaipur 302 017, Rajasthan</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Jaipur 302 017, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arora, C M" uniqKey="Arora C">C. M. Arora</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, Malaviya National Institute of Technology (MNIT)</s1>
<s2>Jaipur 302 017, Rajasthan</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Jaipur 302 017, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rerat, M" uniqKey="Rerat M">M. Rerat</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Equipe de Chimie-Physique, IPREM UMR5254, Université de Pau et des Pays de l'Adour, av. du Président P. Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahuja, B L" uniqKey="Ahuja B">B. L. Ahuja</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, M.L. Sukhadia University</s1>
<s2>Udaipur 313 001, Rajasthan</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Udaipur 313 001, Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Ravindra" uniqKey="Pandey R">Ravindra Pandey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, Michigan Technological University</s1>
<s2>Houghton, MI 49931</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Houghton, MI 49931</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0055538</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0055538 INIST</idno>
<idno type="RBID">Pascal:12-0055538</idno>
<idno type="wicri:Area/Main/Corpus">002334</idno>
<idno type="wicri:Area/Main/Repository">002F99</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>APW calculation</term>
<term>Absorption coefficient</term>
<term>Absorption spectrum</term>
<term>Band structure</term>
<term>Chalcopyrite</term>
<term>Copper Indium Selenides Mixed</term>
<term>Copper selenides</term>
<term>Density functional method</term>
<term>Dielectric function</term>
<term>Dielectric properties</term>
<term>Electronic structure</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Interband transition</term>
<term>LCAO method</term>
<term>Modeling</term>
<term>Optical absorption</term>
<term>Optical properties</term>
<term>Permittivity</term>
<term>Reflectance</term>
<term>Refraction index</term>
<term>Semiconductor materials</term>
<term>Solar cell</term>
<term>Spectral function</term>
<term>Spectroscopic ellipsometry</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Cellule solaire</term>
<term>Fonction diélectrique</term>
<term>Propriété diélectrique</term>
<term>Absorption optique</term>
<term>Spectre absorption</term>
<term>Propriété optique</term>
<term>Coefficient absorption</term>
<term>Indice réfraction</term>
<term>Facteur réflexion</term>
<term>Méthode fonctionnelle densité</term>
<term>Méthode LCAO</term>
<term>Calcul APW</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Chalcopyrite</term>
<term>Cuivre Indium Séléniure Mixte</term>
<term>Semiconducteur</term>
<term>Fonction spectrale</term>
<term>Transition interbande</term>
<term>Structure bande</term>
<term>Gallium</term>
<term>Constante diélectrique</term>
<term>Structure électronique</term>
<term>Ellipsométrie spectroscopique</term>
<term>CuGaSe2</term>
<term>CuInSe2</term>
<term>8460J</term>
<term>7115M</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present dielectric-function-related optical properties such as absorption coefficient, refractive index, and reflectivity of the semiconducting chalcopyrites CuGaSe
<sub>2</sub>
and CuInSe
<sub>2</sub>
. The optical properties were calculated in the framework of density functional theory (DFT) using linear combination of atomic orbitals (LCAO) and full-potential linearized augmented plane wave (FP-LAPW) methods. The calculated spectral dependence of complex dielectric functions is interpreted in terms of interband transitions within energy bands of both chalcopyrites; for example, the lowest energy peak in the ε
<sub>2</sub>
(ω) spectra for CuGaSe
<sub>2</sub>
corresponds to interband transitions from Ga/Se-4p → Ga-4s while that for CuInSe
<sub>2</sub>
emerges as due to transition between Se-4p → In-5s bands. The calculated dielectric constant, ε
<sub>4</sub>
(0), for CuInSe
<sub>2</sub>
is higher than that of CuGaSe
<sub>2</sub>
. The electronic structure of both compounds is reasonably interpreted by the LCAO (DFT) method. The optical properties computed using the FP-LAPW model (with scissor correction) are close to the spectroscopic ellipsometry data available in the literature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic and Optical Modeling of Solar Cell Compounds CuGaSe
<sub>2</sub>
and CuInSe
<sub>2</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SONI (Amit)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DASHORA (Alpa)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GUPTA (Vikas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ARORA (C. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RERAT (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AHUJA (B. L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PANDEY (Ravindra)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, Global Institute of Technology (GIT)</s1>
<s2>Jaipur 302 022, Rajasthan</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, M.L. Sukhadia University</s1>
<s2>Udaipur 313 001, Rajasthan</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, Malaviya National Institute of Technology (MNIT)</s1>
<s2>Jaipur 302 017, Rajasthan</s2>
<s3>IND</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Equipe de Chimie-Physique, IPREM UMR5254, Université de Pau et des Pays de l'Adour, av. du Président P. Angot</s1>
<s2>64053 Pau</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics, Michigan Technological University</s1>
<s2>Houghton, MI 49931</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2197-2208</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000506046860040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0055538</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present dielectric-function-related optical properties such as absorption coefficient, refractive index, and reflectivity of the semiconducting chalcopyrites CuGaSe
<sub>2</sub>
and CuInSe
<sub>2</sub>
. The optical properties were calculated in the framework of density functional theory (DFT) using linear combination of atomic orbitals (LCAO) and full-potential linearized augmented plane wave (FP-LAPW) methods. The calculated spectral dependence of complex dielectric functions is interpreted in terms of interband transitions within energy bands of both chalcopyrites; for example, the lowest energy peak in the ε
<sub>2</sub>
(ω) spectra for CuGaSe
<sub>2</sub>
corresponds to interband transitions from Ga/Se-4p → Ga-4s while that for CuInSe
<sub>2</sub>
emerges as due to transition between Se-4p → In-5s bands. The calculated dielectric constant, ε
<sub>4</sub>
(0), for CuInSe
<sub>2</sub>
is higher than that of CuGaSe
<sub>2</sub>
. The electronic structure of both compounds is reasonably interpreted by the LCAO (DFT) method. The optical properties computed using the FP-LAPW model (with scissor correction) are close to the spectroscopic ellipsometry data available in the literature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fonction diélectrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Dielectric function</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Función dieléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Propriété diélectrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dielectric properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Propiedad dieléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Absorption optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical absorption</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Absorción óptica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Spectre absorption</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Absorption spectrum</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espectro de absorción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Coefficient absorption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Absorption coefficient</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Coeficiente absorción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Indice réfraction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Refraction index</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indice refracción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Facteur réflexion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Reflectance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Coeficiente reflexión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode LCAO</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>LCAO method</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método LCAO</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Calcul APW</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>APW calculation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método onda plana mejorada</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cuivre Indium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper Indium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre Indio Seleniuro Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Fonction spectrale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Spectral function</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Función espectral</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Transition interbande</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Interband transition</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Transición interbanda</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Structure bande</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Band structure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estructura banda</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Constante diélectrique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Permittivity</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Constante dieléctrica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>CuGaSe2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>7115M</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>037</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002F99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0055538
   |texte=   Electronic and Optical Modeling of Solar Cell Compounds CuGaSe2 and CuInSe2
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024